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§1. Introduction. .

In classical harmonic analysis; two types of. functions f .are
considered: (i) -f can be represented as a trigonometric sertes, .

i.e.

f(t).= z e e 0, Tt eR,

TZ e 00

(1i) £ ¢ LZ(R). Then by the Inversion theorem,

£(t) = —— J cw)el®t du.
V21 J e
In terms of optics, the spectrum of the_ligh;wsignal f in (i) is
made up of finite or coﬁntable number of sharp lines of intensity
Jcklz at the frequency‘ Qk' The‘ligbt Sig?al 'f in (1i) has
continuous spectrum on the frequency band R. Note Ehat in this

case, for each.fixed h > O, : : Ce e

t+h 2
11m f l£(v)%ar = o.
tote ¢ |

2 Lo : Y
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This means that the energy emitted by the signal during a time
intervsl of fixed length h approaches 0 as the interval advances
to infinity on the time axis.

In the early twenty century, some physicists such as Rayleigh,
Schuster, Taylor, were interested on the type of white light signals

f (e.g. sﬁnlight) that have continuous spectrum and infinite energy

(i.e. J lf(t)l2 dt = »). The two classical approaches do not seem

00

vto explain the behavior of such light signals satisfactorily. Wiener
felt that the difficulty stemmed from the limitation of the classical
theory. Around the twenties, he began developing a ''generalized"
harmonic analysis:that could cover signals £ on R which are on
‘one hand so irregular that their spectrum are not made up of sharp

lines alone and on the other so lastingly vigorous that

rt+h 2 _ 2

f If(r)l dt # 0 as t + o, The class of functions W°(R) he
t - .

considers is the set of Borel measurable functions £ on R such

that

T
limil'_ff |f(t)lz‘dt
T+ “1 Jop

exists and is finite [19]. In order to study the spectrum of the
functions f ¢ WZ(R) and the covariance function

T~»c0

T ,
¢(t) = 1lim -2—15[ £+ e,
T |

Wiener introduced the following integrated Fourier transformation
W(f) of f defined by -
-1 o -itu 1 | ~itu
8(u)=2—1-([ +I -f—Lt-?e———dt+[ £(t) &=—L gp).
T ) -it -1 -

1 it

(1.1)
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(The last term on the right hand side of (1.1) guarantees integrability
about the origin). Analogous to the Plancherel theorem in the L2 case,

he showed that for f e WZ(R)

T—voo 2T

1 (T 12 I 2
lim == J . [£(£)]|© dt = 1im —-—f l,g(u+h)_ - g(u-h)|“ du. (1.2)
It has been found that the theory of generalized harmonic analysis
is applicable to diverse areas of pure and applied mathematics. In
particular, it was used to consider the problem of anti—aircraft.fiﬁe
control with radar during World War II apd brought into the theory of
prediction and filteringf For a detail account of this and its
relationship wittholmogorov's stochastic procesé, the reader may ‘

refer to (1], [4], [10], [12],A[15].

The ciass of functions wsz) ’defined absve is, however, not
closed under addition, hénée ﬁény fﬁﬁctipnél analytic téchniques
are not applicable in the theory. To remedy this, Masani developed
a nonlinear Banach grapﬁ theory to study wz(R) >and its cloéed”
subspaces [14], [15]. Yet another approach is to embed VWZ(R) intor
a larger Banach space; a suitable one will be the Marcinkiewicz spacé
MZ(R) [1l]f‘,Thi$ sgace_had been considered by Bohr and Félner [3]
and Bertrandias [2]. It is the purpose of the paper to report some
recent results of the joint work of Lee and the author on this

diréctidn. The detail will appear elsewhere ([6], [7], [8]).

§2. The Marcinkiewicz.Spaces.

For '1 < p <.«, let Mp(R) denote the class of complex valued

Borel measurable functions f on R such that
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T ) =
[El] = Tim <—f [£]P)P < o
v MP T 2T T

and let WP(R) be the set of f ¢ MP(R) such that

1

NS T LR
lim G JEIHY
-T B

Trco

exist. Roughly, the above norm estimates the average behavior
of f for large T. It is easy to see that for any function

felPm, |l£]]. . = 0. By identifying functions whose difference
M

has zero norm, (MP(R), Il-ll) is a Banach space ([3], [92]).

Let BPAP be.the class of {Besicovitch) almost periodic

functions, i.e. the Mp-closure 6fvthe set of‘trigonometric

_ it, (*) e . e
polynomials E ake k . tk € R. It is known that for 1 < p < o,
k=1 : 4
‘ ‘ 1
BPAP is a nonseparable, reflexing Banach space ((BPAPY = gP AP,
%-+ ;% = 1) and that BPAP ¢ WP(R), hence we have

Proposition 2.1, Let 1 < p < =, then Mp(g) contains a noneeparable

reflexive subspace.

We can also show that

Proposition 2.2. Let llli_p < w, then MP(R) contains a subspace

isomorphicato Em.

For the extremal_structure of the unit sphere S(MP(R)) of .MP(R),

we have

Theorem 2.3. Let 1 < p < o, Then each norm 1 function £ in WP(R)

is an extreme point of S(MP(R)). ,S(Mi(R)) does not ¢ontain any

extreme point.
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In order to étudy the duality properties of MP(R), we

introduce the following auxilliary spaces;

1
MP(R) = {f:f is Borel measurable on R,]ffll = sup Gﬁfnf [flp)p'< o}
MP T>1 -T
and

1
1 (* P\P

IP@R) = (£ ¢ MP(R): 1im (if f L£]FYP = o).

T -T . :

It is easy to show that MP(R) is a Banach space and IP(R) is

a closed subspace of MP(R)}

Theorem 2.4. For 1 < p < =

(1) MP(R) is the second dual of IP(R) and

(i1) MP(R) 1is isometrically isomorphic to MP(R)/IP(R).
It follows from Theorem 2.4 that for 1 < p < o,
wP(R)* = IP(R)* @ IP(R)*

and MP(R)* is isometrically isomorphic to IP(R) . The concrete

representations of functionsls on Ip(R) and MP(R) are given by

Theorem 2.5. Suppose that 1 < p < » and ;-+ %;= 1.

P
H .
(i) If & ¢ Ip(R)*. Then there exists a e‘Mp(R) and a

countably additive, positive, bounded regular Borel measure u on -

[1,) such that for all f ¢ IP(R),
1
3 |

(i1) There exists a (norm) dense subset’' D S;MP(R)* such that

-

N T N :
LL,f> = f f(t)y(e)dt) du(T). 2.1

1 -T

)
£ in D can be represented as in (2.1) with ¢ € MP (R) where 1
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ié a finite additive, bositivé, bounded régular Borel measure on [1,x),

which vanishes on bounded intervals.

§3. The Integrated Lipschitz Class.

For 1 < p < », let VP(R) denote the class of'complex valued

.Borel measurable functions on R such that

IIBIIVP = IIE'(fé'J lg(ute) - g(u-e)Pdu)P < «,
. e->+0 - o0

This class of functions had been studied by Hardy and Littlewood in
their in&eSCigation of fractional derivatives [5].

Let g € VP(R) and let
~ o .-t
g = f e (g - T, g)dt
. Jo .

where T, is the translation operator defined by

(r.£)(x) = £(x+t), £ e VP(R).

By using the theory of helixes in [13], we can show
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Therefore, we have

Proposition 3.2. Let 1 < p<w, If g and g' are in PRy,

then Ilgllvb = 0.

By identifying functions whose difference has zero norm, we

can show that

Theorem 3.3. For 1 < p < «, the normed linear space VP(R) is

complete. *

For the case p = 1, Nelson [16] showed that Vl(R) is
isometrically isomorphic to the space of bounded regular Borel

measures on R, hence the properties of Vl(R) are well known.

§4., The Integrated Fourier Transformation.

In proving the identity (1,2), Wiener introduced a fairly
general form of Tauberian theorem which applies to functions in WZ(R);
In order to consider the Fourier trénsférmation between MZ(R)_ and
V2(R), we prove another type of Tauberian theorem which applies to the
limit supremum 6f functions at =, |
Let Mt denote the class of positive, Borel measurable functions
on [0,®) ‘such that 1im -%{JT £ < o,

T-o0 0

Lemma 3.1. Let k be a positive continuous function on [0,w). Assume

oo

that E(t) = sup k(x) 1is integrable and C1 = j k(t)dt. Then for all
x>t 0

fe M+,

|-

T-i_nTJ £(Tt)k(t)dt < C, 1im J £ (t)dt.

T+~ 70 1 Tre 0

Moreover, Cl is the best possible constant for £ e M%,
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Lemma 3.2. Let k be a positive continuous function on “[O,w),.sqqhﬂ o
that E(t) = sup k(x) 1is integrable. Suppose there is a to satisfying
x>t : S

tok(to) = max t*k(t)( = C
- tv0
Then for all f e MT,

and k(t) > k(t for all t in [O,to].

2) 0’

T oo
C, lim %-J f(t)dt < lim f f(Tt)k(t)de.
T+ 0 T JQ

Moreover, C2 is the best possible constant for £ ¢ M*,

It is easy to show that MZ(R) - Lz(R, ~é£§0, hence for f € MZ(R),
the integral
-1 l ’oo f(t) 2 »
+ ','—L—z dt
I 3 t
exists.. This implies that
-1 oo -itu
f + f fﬁ%%%————-dt
—o0 1 g .
2 de , (2 e defd
converges in L7 (R, ———EO. Therefore, if f & M"(R), we can define
1+t ‘ . e
the integrated Fourier transformation  W(f) = g as.

T S itu 1 e—itﬁ_l
g(u) = — (f + J f(t) —yy dt <+ J f(t)T dt).
-0 -1

Now for h > 0O,

1 (® eith_e—ith ~itu
(t,8 - T_;,8)(u) = E;.j_m E()=—F— e dt

- ;L_f f(t)ZSizéhtg e—itudt.
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Thus (Thg - T_hg) is the Fourier transformation of

z sin (ht)
/ cqersiatn

and the Plancherel theorem implies that

2

~oo Tt

‘1"[ ‘ | g (u+h) -g(u-h)lz,d_u=%j If(t)lzf’in—}l%gt._,

o

Hence,

o0 .2
[lweey]] , = Tim %j |£ey|? S RE 4

h+0t . Tt
— 2 sinzt ’ 5
= lim If(Tt)l ——-i'—dt.

wt

Zsinzt : v” l‘ N2 R iJ
Letting k(t) = ===, t > 0 and let £(t) = 3 (JE) | + [£¢-t) ] )
t > 0, Lemma 3.1 implies that W(f) € VZ(R). Moreover, the lemma
implies that W(f) = 0 for f e I2(R). Since M2(R) = M2(R)/IZ(R),

W induces a map from MZ(R) into VZ(R). Restating.Wieﬁer's_theorém;g

in [19], we have

Theorem 4.3. Let f e W2 (R). Then ||w(f)]] o= Ll o 0
v ‘ M= :
Our extension of Wiener's theorem is:

Theorem 4.4. The integratéd Foﬁrier trénsformation‘ Wiisz(R) + V2(R)

is an isomorphism with

lu“

k(e)dt)? and  [|W Y]] = (max t-k(e))Z
0 £>0 |

=

1--]

ull=
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2

where k(t) = _Z_Ei_zn__g , t >0 and k(t) = max k(x)..
Tt X>t

The- two isomorphic constants are direct consequence of Lemma 4.1
and 4.2. Numerically, we find that ||W|| = 1.05 and []w'l[|¢§ 1.49.
The surjectivity of W is obtained as follows: for each g ¢ VZ(R);
we may assume that ‘é € LZ(R) (Proposition 3.1). Let é denote the

ipverse'Fourier transformation of g and let

£(t) = -1 /27 t.§(t). (4.1)

By direct computation, we can show that f € MZ(R) and W(f) = g.

For p # 2, we have the following:

Theorem 4.5. For 1 < p < 2, the integrated Fourier transformation

!

1
W defines a bounded linear operator form MP(R) into VP (R) with

: " poo .l.
W] < <j k(e)de)P
0 E
o ;P
where: k(t) = 2sin’t , t > 0.
ntP

§5. The Convolution Operators.

We call a function £ in MP(R) regular if

T+a :
lim f lflpA= 0 for any a > 0.

Let ME(R) denote the set of regular functions in MP(R) and let
Mg(R) = ME(R)/IP(R). Then M?(R) is 'a closed subspace of MP(R)

and WP(R) C ME(R).
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Let M denote the set of bounded regular Borel measure on R
and let Ml be the subspace of measures with bounded support. For

uE Ml’ we define the convolution operator ¢u: MP(R) - Mp(R) by

o (£) =u *f £ e MP(R).

Note that ¢u also defines an operator from Lp(R) into LP(R).

Restricting ¢u to MS(R) yields

Proposition 5.1. TFor yu € Ml’ the operator ¢u: ME(R) -> MS(R)

satisfies
lim ;L.f l(x VK¢ - ¢ y )frp = 0,
: 2T jg' "[-T,T] w u*[-T,T]

 T-0

By using this, we can show that for f ¢ ME(R)

. 1 .
= 7o (L P\P
ll<1>u<f)llMp = ;i: G f_T le (£)%) (5.1)
1
- .1 PP
= 1im (== f le (x ~ BIF
To 20 Jg M [-T,T]

|A

eyl - Hiell

Conversely, if for any € > O, there exists an f ¢ LP(R) such that

e o>l > [l Il Ilel] _ -«
] LP H LP LP
we can construct an f in Mg(R) such that

~ ) s ] E - .
|I¢u(f)|IMp_:_,|§u|| p ll llMp €

L
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This fact and (5.1) imply that

II¢UJIMP = ll<1>u|._,|Lp - for  uoe M.
It is known that for pw e M and for p =1, ]|®u|| 1= llu]l;'
: L
for p = 2, lf¢ull 9 = llallm where G is the Fourier-~Stieltjes
L ‘ .

transformation of yu; and for 1 < P<®, p#2,
~
Hually, < He I < Tl
L M P
If u e M, then there exists a sequence of {un} in M1 which converges
to u, hence {¢ } is a Cauchy sequence of operators in MP(R)

n
and converges to the operator ¢u.

Theorem 5.2. For 1 < p < » and for u € M, the coﬁvolutibn'opefator

¢ : MP(R) + MP(R) 1is well defined and ® = |]o .
yi MPR)Y > WP (R) He 11, = 1 ull o
Let g ¢ VZ(R) and let g be the inverse Fourier transformation of
g, then the function defined by f£f(t) = i V2w t-g(t) is in MZ(R) and

W(f) = g (see (4.1)). For each pu e M we have

l!
@ (£)(t) = -i V2m t-o (8)(t) = -1 V27 t. (utg(t)) = -1 VZ7 £ (ieg) (t).
This implies that for yu ¢ Ml’

Wu*f) = W(e £) = ji-g = u-Wf.

By using a limit argument, we can show that:

Theorem 5.4. For each u € M, the convolution operator

éu: Mi(R) - Mi(R) defines thé'multiplief operator 'Wﬁﬁ Vi(R) -+ Vi(R)
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(Vi’(R) = W(Mi(R))) which satisfies

W(®u(f)f='?ﬁ(W(f))

Moreover,l'llwullfé'llﬁllm
I, < el < T, wen
) wll, 2 ; V2 < il  ueM
| e l.—l:
where C = ||w|]|«|[w *]].
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